- Length of Plane Curves:

i. Suppose that $y=f(x)$ is a smooth curve on the interval $[a, b]$, then:

$$
\begin{aligned}
L_{k} & =\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}=\sqrt{\left(\Delta x_{k}\right)^{2}\left[1+\frac{\left(\Delta y_{k}\right)^{2}}{\left(\Delta x_{k}\right)^{2}}\right]} \\
& =\sqrt{\left[1+\left(\frac{\Delta y_{k}}{\Delta x_{k}}\right)^{2}\right] \cdot\left(\Delta x_{k}\right)} \\
\therefore L & =\sum_{k=1}^{n} L_{k}=\sum_{k=1}^{n} \sqrt{\left[1+\left(\frac{\Delta y_{k}}{\Delta x_{k}}\right)^{2}\right] \cdot\left(\Delta x_{k}\right)}
\end{aligned}
$$

When $n \rightarrow \infty \Rightarrow \Delta x \rightarrow 0$

$$
\text { So } \left.\therefore L=\lim _{\Delta x_{k} \rightarrow 0} \sum_{k=1}^{\infty} \sqrt{\left[1+\left(\frac{\Delta y_{k}}{\Delta x_{k}}\right)^{2}\right.}\right] \cdot\left(\Delta x_{k}\right)
$$

Remember that $\lim _{\Delta x \rightarrow 0} \frac{\Delta y_{k}}{\Delta x_{k}}=f^{\prime}(x)$
$\therefore L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
ii. Suppose that $x=f(y)$ is a continuous from $y=c$ to $y=d$, then the arc-length of the curve is:
$L=\int_{c}^{d} \sqrt{1+\left[f^{\prime}(y)\right]^{2}} d y=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
iii. If the curve is represented by a parametric equations:
$x=x(t), y=y(t)$ and $a \leq t \leq b$ and if $\frac{d x}{d t}, \frac{d y}{d t}$ are continuous functions on $a \leq$ $t \leq b$, then the arc-length of the curve is:

$$
\begin{equation*}
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \cdot d t \tag{3}
\end{equation*}
$$

Example 1: Find the length of the curve

$$
y=\frac{4 \sqrt{2}}{3} x^{3 / 2}-1 ; \quad 0 \leq x \leq 1 .
$$

Sol.: We use equation (1) with $a=0$ and $b=1$, and

$$
\begin{aligned}
& y=\frac{4 \sqrt{2}}{3} x^{3 / 2}-1 \\
& \frac{d y}{d x}=\frac{3}{2} * \frac{4 \sqrt{2}}{3} x^{1 / 2}=2 \sqrt{2} x^{1 / 2} \\
& \left(\frac{d y}{d x}\right)^{2}=\left(2 \sqrt{2} x^{1 / 2}\right)^{2}=8 x .
\end{aligned}
$$

The length of the curve from $x=0$ to $x=1$ is

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+8 x} d x \\
& =\frac{1}{8} \int_{0}^{1} \sqrt{1+8 x} 8 \cdot d x=\left.\frac{1}{8} \cdot \frac{(1+8 x)^{3 / 2}}{3 / 2}\right|_{0} ^{1} \\
& =\frac{1}{12} \cdot\left[(1+8 * 1)^{3 / 2}-(1+8 * 0)^{3 / 2}\right]=\frac{13}{6} \text { unit length. }
\end{aligned}
$$

Example 2: Find the length of the curve $y=\left(\frac{x}{2}\right)^{2 / 3}$ from $x=0$ to $x=2$.
Sol.: The derivative:

$$
\frac{d y}{d x}=\frac{2}{3}\left(\frac{x}{2}\right)^{-1 / 3} * \frac{1}{2}=\frac{1}{3}\left(\frac{x}{2}\right)^{-1 / 3}
$$

is not defined at $x=0$, so we can not find the curve's length with equation (1).
We therefore rewrite the equation to express x in term of $y(x=f(y))$:
syllabus

$$
y=\left(\frac{x}{2}\right)^{2 / 3} \Rightarrow y^{3 / 2}=\frac{x}{2} \Rightarrow x=2 y^{3 / 2}
$$

Note that when $x=0 \Rightarrow y=0$

$$
\text { and } x=1 \Rightarrow y=1
$$

from this we see that the curve whose length we want is also the graph $x=2 y^{3 / 2}$ from $y=0$ to $y=1$

The derivative

$$
\frac{d x}{d y}=2 * \frac{3}{2} y^{1 / 2}=3 y^{1 / 2}
$$

is continuous from $y=0$ to $y=1$. We may therefore us equation (2) to find the curve's length:

$$
\begin{aligned}
L & =\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{0}^{1} \sqrt{1+\left(3 y^{1 / 2}\right)^{2}} d y \\
& =\int_{0}^{1} \sqrt{1+9 y} d y=\left.\frac{1}{9} \frac{(1+9 y)^{3 / 2}}{3 / 2}\right|_{0} ^{1} \\
& =\frac{2}{27}\left[\left((1+9 * 1)^{3 / 2}\right)-\left((1+9 * 0)^{3 / 2}\right)\right] \\
& =\frac{2}{27}(10 \sqrt{10}-1) \approx 2.27 \text { unit length. }
\end{aligned}
$$

Example 3: Find the length of the circle of radius r defined parametrically by $x=r \cos t$ and $\quad y=r \sin t \quad 0 \leq t \leq 2 \pi$.
Sol.: As the curve is defined by parametric equation, we use equation (3) to find the length of the curve

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \cdot d t
$$

We find $\quad \frac{d x}{d t}=-r \sin t \Rightarrow\left(\frac{d x}{d t}\right)^{2}=(-r \sin t)^{2}=r^{2} \sin ^{2} t$

$$
\begin{aligned}
& \frac{d y}{d t}=r \cos t \quad \Rightarrow \quad\left(\frac{d y}{d t}\right)^{2}=(r \cos t)^{2}=r^{2} \cos ^{2} t \\
& \begin{aligned}
&\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=r^{2} \sin ^{2} t+r^{2} \cos ^{2} t \\
&=r^{2}\left(\sin ^{2} t+\cos ^{2} t\right)=r^{2} . \\
& \begin{aligned}
\therefore L & =\int_{0}^{2 \pi} \sqrt{r^{2}} \cdot d t
\end{aligned}=\int_{0}^{2 \pi} r \cdot d t=\left.r \cdot t\right|_{0} ^{2 \pi} \\
&=r(2 \pi-0)=2 \pi \cdot r \text { unit length. }
\end{aligned}
\end{aligned}
$$

Example 4: Find the length of the curve

$$
x=\cos ^{3} t, \quad y=\sin ^{3} t, \quad 0 \leq t \leq 2 \pi .
$$

Sol.: Because the curve's symmetry with respect to coordinate axes, its length is four times the length of the first quadrant portion. We have

$$
\begin{aligned}
& x=\cos ^{3} t, \\
& \begin{aligned}
&\left(\frac{d x}{d t}\right)^{2}==\left[3 \cos ^{2} t \cdot(-\sin t)\right)^{2}=9 \cos ^{4} t \sin ^{2} t \\
& \begin{aligned}
\left(\frac{d y}{d t}\right)^{2} & =\left[3 \sin ^{2} t \cdot \cos t\right]^{2}=9 \sin ^{4} t \cos ^{2} t
\end{aligned} \\
& \begin{aligned}
\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} & =\sqrt{9 \sin ^{2} t \cos ^{2} t\left(\sin ^{2} t+\cos ^{2} t\right)} \\
& =\sqrt{9 \sin ^{2} t \cos ^{2} t}=|3 \sin t \cos t| \\
& =3 \sin t \cos t \text { (because } \sin t \cdot \cos t \geq 0 \text { for } 0 \leq t \leq \pi / 2)
\end{aligned}
\end{aligned} \begin{aligned}
\text { (b) }
\end{aligned} \\
&
\end{aligned}
$$

Therefore: The Length of the first quadrant portion $=\int_{0}^{\pi / 2} 3 \cos t \sin t . d t$

$$
=\frac{3}{2} \int_{0}^{\pi / 2} \sin 2 t \cdot d t=-\left.\frac{3}{4} \cos 2 t\right|_{0} ^{\pi / 2}=\frac{3}{2}
$$

The length of the curve is four times this: $4(3 / 2)=6$ unit length.
Homework: Find the length of the following curves:

1. $6 x y=x^{4}+3$ from $x=1$ to $x=2$.
2. $x=\left(y^{3} / 3\right)+1 /(4 y)$ from $y=1$ to $y=3$. (Hint: $1+(d x / d y)^{2}$ is a perfect square.)
3. $x=\left(y^{3 / 2} / 3\right)-y^{1 / 2}$ from $y=1$ to $y=9$. (Hint: $1+(d x / d y)^{2}$ is a perfect square.)
4. $x=\left(y^{4} / 4\right)+1 /\left(8 y^{2}\right)$ from $y=1$ to $y=2$. (Hint: $1+(d y / d x)^{2}$ is a perfect square.)
5. $x=\left(y^{3} / 6\right)+1 /(2 y)$ from $y=2$ to $y=3$. (Hint: $1+(d y / d x)^{2}$ is a perfect square.)
6. $x=\cos 2 \theta \quad, \quad y=\sin 2 \theta \quad 0 \leq \theta \leq \pi / 2$.
7. $x=t-\cos t, \quad y=1+\sin t \quad-\pi \leq t \leq \pi$.
