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. Length of Plane Curves: 

i. Suppose that y=f(x) is a smooth curve on the interval [a, b], then: 

  

      

  

When      

 So  

Remember that  

 

  ----(1) 

ii. Suppose that x=f(y) is a continuous from y=c to y=d, then the arc-length of the 

curve is: 
 

  ----(2) 

 

iii. If the curve is represented by a parametric equations: 

x=x(t), y=y(t) and a ≤ t ≤ b and if ,  are continuous functions on             a ≤ 

t ≤ b, then the arc-length of the curve is: 
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    ----(3) 

 

Example 1: Find the length of the curve  

    . 

Sol.: We use equation (1) with a=0 and b=1, and 

    

    

   . 

 The length of the curve from x=0 to x=1 is 

    

      

      unit length. 

Example 2: Find the length of the curve  from x=0 to x=2. 

Sol.: The derivative: 

    

is not defined at x=0, so we can not find the curve's length with equation (1). 

We therefore rewrite the equation to express x in term of y (x=f(y)):    
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 Note that when x=0    y=0 

       and    x=1    y=1 

from this we see that the curve whose length we 

want is also the graph  from y=0 to y=1 

The derivative  

   

is continuous from y=0 to y=1. We may therefore us equation (2) to find the 

curve's length: 

   

     

   

   unit length. 

Example 3: Find the length of the circle of radius r defined parametrically by 

x=rcos t and y=rsin t  0 ≤ t ≤ 2. 

Sol.: As the curve is defined by parametric equation, we use equation (3) to find the 

length of the curve 

     

 We find     
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and   

        

 

      unit length. 

 

 

Example 4: Find the length of the curve 

   x=cos
3
t,  y=sin

3
t, 0 ≤ t ≤ 2.  

Sol.: Because the curve's symmetry with respect to 

coordinate axes, its length is four times the length 

of the first quadrant portion. We have 

x=cos
3
t,  y=sin

3
t 

  

 

      

      (because sint.cost ≥ 0 for 0 ≤ t ≤ /2) 

Therefore: The Length of the first quadrant portion=  
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 The length of the curve is four times this: 4(3/2)= 6 unit length.  

Homework: Find the length of the following curves: 

1. 6xy = x
4
  + 3  from x = 1 to x = 2. 

2. x= (y
3
/3) + 1/(4y) from y = 1 to y = 3. (Hint: 1 + (dx/dy)

2
 is a perfect square.) 

3. x= (y
3/2

/3) – y
1/2

 from y = 1 to y = 9. (Hint: 1 + (dx/dy)
2
 is a perfect square.) 

4. x= (y
4
/4) + 1/(8y

2
) from y = 1 to y = 2. (Hint: 1 + (dy/dx)

2
 is a perfect square.) 

5. x= (y
3
/6) + 1/(2y) from y = 2 to y = 3. (Hint: 1 + (dy/dx)

2
 is a perfect square.) 

6. x=cos2 , y=sin2 0 ≤  ≤ /2. 

7. x = t – cost,  y = 1 + sint   ≤ t ≤ . 

 


